Modeling Operations at Pharmaceutical Distribution Warehouses

Cardinal Health, a billion dollar pharmaceutical distribution and logistics firm, manages multiple products from brand name pharmaceuticals and generic drugs to over the counter drugs, health & beauty items and their own private label. They face a multitude of typical distribution warehouse challenges that are further complicated by the nature of pharmaceutical products, which are smaller in size, consumable, expensive, and could be life critical. Brian Heath, Director of Advanced Analytics at Cardinal Health, and an experienced user of AnyLogic software, employed agent based modeling to solve various business problems, saving Cardinal Health over $3 Million annually.


Cardinal Health is an essential link in the healthcare supply chain, offering next day delivery to over 30,000 locations including hospitals, retail pharmacies, physicians' offices, and direct to consumer. Other value added services including efficiency and demand management, working capital management and contract credit management add to the difficulties of poor manufacturing reliability and supply disruptions in the market due to FDA and DDA regulations. In summary, Cardinal Health must keep up with the variability in pharmaceutical distribution management.

Cardinal Health considers facility layout, flow of product, order picking, labor planning & scheduling, customer order requirements and congestion for analysis and day to day operations management. Traditional analysis tools such as empirical trial and error, are risky, expensive and difficult to make changes. Industrial engineering operations researchers would suggest mathematical models, inexpensive, but the models do not capture unexpected dynamics. If anything is open or has emergent behaviors such as congestion, a standard mathematical model would not be able to solve. Thirdly, process driven or discrete event modeling is not advantageous due to its inability to represent a facility naturally. This led Brian Heath and Cardinal Health to explore alternative analysis options.

Distribution Warehouse Simulation Model

Tested Warehouse Layout Configurations


Agent Based Modeling (ABM) with AnyLogic Simulation and Modeling software gave Cardinal Health the device required to tackle many distribution warehouse issues without the restrictions of traditional tools. ABM represents abstractions of distributed autonomous entities that can interact with each other and their environment through space and time, allowing Cardinal Health to capture work time allocation, congestion wait time, cycle times, distance traveled, worker variability and other important metrics.

Warehouse Layout 3D Simulation

3D Animation

The model built was ultimately concerned with the activities of employees and the interaction with each other during the day, making it necessary to import data such as picking time and performance standards into the model. Now, Cardinal Health can gather congestion wait time data and see how much of a problem it is causing in the warehouse since "agents" are modeled as individuals with special relationships to each other. Additional parameters included in the model are several worker speeds, worker behavior, learning curves, cycle times, product turn-around and distance covered walking or driving.

The ability to import Excel files was also imperative as Cardinal Health has numerous warehouses, and it is mandatory to test multiple layouts. Using AnyLogic, if a change is needed, it's as simple as updating the Excel file, importing it into the model and running the model again.


The Agent Based Model built with AnyLogic software allows Cardinal Health to compare layouts, picking technology and product slotting strategies. In addition, they can evaluate different methods of picking to update staffing models and for on-the-floor support if a workload changes as orders vary on a day to day basis. Statistics is also gathered such as tact time, how many batches are completed in an hour, truck unloading time, and sequencing of events.

Besides the clarity given through the above metrics, the model revealed a problem due to the random distribution of work. Each employee's work load was uneven making one faster and one slower. By balancing the workload, employees began working at a similar pace and congestion decreased dramatically.

Warehouse Model Results
Some of the Project's Results

By minimizing congestion using AnyLogic software, Cardinal Health was able to decrease the average shift length from 10.5 hours to 7.25 hours and increase the amount employee capacity. Cardinal Health saves over $3 Million annually using Agent Based Modeling with AnyLogic Simulation technology.

“AnyLogic’s agent libraries, flexible architecture, and integrated animation enables the continuing success of this project,” declares Brian Heath, Director of Advanced Analytics at Cardinal Health, you can view his presentation and learn more about using Agent Based Modeling for real world application:

More Case Studies

  • Warehouse Simulation for Choosing Optimal Picking Algorithm
    Kuehne+Nagel, a leading global provider of logistics solutions, was involved in planning a new warehouse for one of their clients. The warehouse would process 13K order lines or 750 picking cartons per day. The project included the development of the best algorithm for multi-order picking. It was planned that the orders in the warehouse would be served by workers with trolleys (or fangos). Workers with trolleys would pick the goods and put them in cartons by order.
  • Simulation of Maternity Ward Operations
    This model simulates the maternity ward in a hospital currently under construction. The purpose of the model is to support discussions related to which resources, capacity, and work methods are required on the new ward. The project was carried out for Karolinska University Hospital in the Stockholm County, Sweden.
  • Evaluating Hospital Inpatient Care Capacity
    Stockholm County, Sweden was in the process of building a new, highly specialized hospital. The Health Administration of the county questioned whether they would get an acceptable level of care production with the current investments and reasoning concerning various operational and strategic issues. To find the answers, they used simulation modeling in AnyLogic.
  • Handling Total Care Need for Dialysis Patients
    The County of Stockholm (Sweden), like any country or region, experiences a continuous need to handle the healthcare necessities of various patient groups. Each group can be seen as a subpopulation, with its own distinctive traits, characteristics, and challenges. The discussed simulation project focused on the dialysis patients, a group who needs to visit caregiving facilities frequently.
  • Evaluating Introduction of Warehouse Automation Systems
    Symbotic is a warehouse automation solutions provider. Its systems are based on mobile robots that can travel freely throughout a dense storage structure, accessing products in all locations and handling them at a very high throughput rate. The company needed a tool to help their customers learn the impact of warehouse reorganization and compare capital investments against expected operational savings before the actual introduction of automation systems.
  • Disaster Response Applications Using Agent-Based Modeling
    In an effort to find practical operational solutions for response to an unexpected crisis or natural disaster, Battelle, world’s largest, non-profit, independent R&D organization, needed to test the effectiveness of a 48 hour shelter-in-place order for an Improvised Nuclear Device scenario. The goal was to reduce radiation dosages received during an uncoordinated mass evacuation, by comparing immediate evacuation and shelter-in-place order.
  • Evaluating Healthcare Policies to Reduce Rates of Cesarean Delivery
    The challenge of reducing the cesarean delivery rate has been recognized by numerous researchers for years. For the first time, in research conducted for the Washington State, Alan Mills, FSA MAAA ND, a research actuary, and his colleagues reproduced this part of the United States healthcare system in a simulation model to allow the stakeholders, including health agencies, insurers, clinicians, and legislators, to test their assumptions on the model to find the right solutions.
  • Shaping Healthcare Policy Using Simulation
    An initiative by the Department of Mechanical and Industrial Engineering at the University of Toronto, the Centre for Research in Healthcare Engineering (CRHE), was in response to the immediate and compelling desire for efficiency and quality improvements in the Canadian healthcare system.
  • An Agent-Based Explanation for SPMI Living Situation Changes
    Over the past 60 years, the number of Severely and Persistently Mentally Ill (SPMI) patients in the US living in the community increased. Yet a growing minority of people with severe illness are worse off because they are homeless or incarcerated. In this case study, IBM Global Research and Otsuka Pharmaceuticals used an agent-based approach to model these remarkable swings.
  • Outpatient Appointment Scheduling Using Discrete Event Simulation Modeling
    Indiana University Health Arnett Hospital, consisting of a full-service acute care hospital and a multispecialty clinic, faced poor statistics because the number of no-show patients (those who don’t show up for their scheduled appointments) rose dramatically to 30%. This was primarily connected to the fact that clinic schedules were driven by individual preferences of the medical staff, which led to increased variations in scheduling rules. To eliminate the problem, the client wanted to develop a scheduling methodology that would benefit the clinic, doctors, and patients.