Customer-Centric Transportation Network Modelling


The sphere of public transportation services in Australia is undergoing a transformation in response to a change in demographics that requires inter-modal integration and major infrastructure investment by the Federal government. To better address new challenges, public transport companies need to understand the behavior of their networks from the customer’s point of view. Widespread use of smart cards at public transport allows them to collect the information needed to conduct such research.

The public transportation company employed PwC Australia to develop a solution that could provide a customer-centric view of their railway infrastructure and help the company understand the current incident effects on rail network operations and how to improve the situation. Specifically, the company wanted to:

  • Understand potential number of customers impacted by an incident (e.g. train derailment, motor breakdown, medical emergency). 
  • Take a high-level network view of incidents in order to understand network behavior when they occur. 
  • Provide customers with more accurate predictions of incident-related delays depending on where they are on the network. 
  • Support operational and maintenance decisions concerning incident responses, including planning of predicted response times, allocation of resources, and prioritization of incidents. 
  • Identify specific incidents upon which to perform root cause analysis, e.g. why certain incidents always occur more at a particular location or on a particular type of rolling stock type.

PwC consultants decided to build a model of the transportation network that would simulate train movements, incidents, and customers at stations and in trains.


To build the model, the consultants chose AnyLogic software due to its ability to combine various simulation methods in one model, which was needed to successfully model both train movements (discrete event modeling) and customer behavior (agent-based modeling). The second reason was its scalability: in AnyLogic, it is easy to extend an existing model to adapt it to network development plans and see how the system would work in a new setting.

The input data for the model was obtained from various sources, including the transportation company, government, and publicly available sources, and comprised of:

  • Network layout (signals, track geometry, stations, and platforms). 
  • Train data (train set types and capacity per carriage).  
  • Timetable (route, train type, number of carriages). 
  • Operating rules for recovering the network and in hot weather, including speed restrictions.  
  • Incident data (types of incidents). 
  • Passenger data (smart card data and existing usage statistics).

Public Transportation Simulation Model

Model Animation and Graphs

Train Graph

Train Graph

Train movement logic was reproduced using AnyLogic Rail Library. Also, it utilized some custom library components created in AnyLogic by the PwC specialists taking into account special aspects of this project.

First, the model provided the network view of customers at stations: it showed the number of customers currently waiting at each station on the network (including their direction of travel), and the number of passengers on each train.

What is more important, the model was designed to allow the company to analyze network’s incident recovery behavior and time. If an incident occurs at a railway, it may cause a long-lasting delay in the timetable, especially during rush hours. It may take several hours for the network to fully recover from the incident and for all the trains to start running on schedule after the initial problem is solved. That is why it was essential for the model output to include a Network Incident Graph that clearly showed the length of the effect of each incident on the whole network and enabled the users to test and compare different incident mitigation policies.

The main metric collected was Lost Customer Minutes (LCM), calculated as sum of delay minutes for all individual journeys within a particular train or a network segment. It was important to review LCM in the context of situations when these minutes were lost (e.g. minutes lost during a rush hour and a weekend had different values).

The output included the train graph, which is a conventional way of representing train movement in a network (see picture). Moreover, the consultants animated the model using a GIS map to visually present the processes occurring in the system. The train graph and network animation showed:

  • Train location on the network. 
  • Whether trains were running to the timetable. 
  • Whether trains were able to make return journeys.


The model allowed the users to obtain a passenger-centric lost customer minutes calculation, which is more precise than traditional train-centric methods that either seriously over- or underestimate LCM. This passenger-centric approach was possible due to the use of agent-based simulation.

The clients were able to measure impact of incidents on the network behavior to test and form policies for more efficient incident mitigation (e.g. setting up emergency teams dispatched at certain locations for quick medical help to minimize delays related to passengers’ health conditions). It also helped plan incident response prioritization policies according to the number of passengers affected. With the help of the simulation model, the users could evaluate their investment and business decisions according to their estimated impact on lost customer minutes.

Also, having LCM as the one customer-focused delay metric allowed the transportation company to create customer-focused targets and KPIs within its structure.

Video of the project presentation by Artem Parakhine at the AnyLogic Conference 2014:

Future consultants’ works include extending the model with other forms of transportation and future network elements. They also plan to simulate physical movements of passengers as pedestrians at stations to investigate problems of platform crowding.

More Case Studies

  • Rail Yard Capacity Modeling
    Aurizon is an Australia’s largest rail freight operator, managing more than 700 locomotives and more than 16,000 wagons. Aurizon is widely engaged in coal, iron ore, and mineral transportation. In order to increase operational efficiency the company decided to move one of their rail yards to other town. This rail yard was mainly engaged in wagon and locomotive maintenance and locomotive preparation.
  • Selecting the Best Inventory Policy Using Gojii
    Existing supply chain and S&OP tool sets do a great job of managing supply to meet a selected "forecast." However, there is no single "correct forecast" of future demand, and existing tools are not designed to select the best demand level for the business. There is a "tool gap" between forecast inputs and selection of the best demand signal (aka "forecast") to drive your S&OP system. Gojii is the tool created by DecisioTech that fills that gap.
  • Maximizing Push Boat Fleet’s Net Voyage Revenue
    InterBarge, a first-class waterway operator, affiliated with SCF Marine, a part of Seacor Holding Group, operates freight along the HPP Waterway (Hidrovia Parana Paraguay, located in Argentina, Paraguay, Brazil, and Uruguay) on a dedicated contract carriage. The company’s challenge was to use the boat capacity free from dedicated contract commitment as a fleet, maximizing net voyage revenue.
  • CSX Solves Railroad Operation Challenges with and without AnyLogic Rail Library
    CSX is a US railroad company that operates about 21,000 route miles (34,000 km). AnyLogic allows the railroad industry users to simulate line-of-road, terminal, and yard problems. The following three projects, completed by CSX in 2014, covered a variety of tasks that were solved using AnyLogic software.
  • Preventing “Bus Bunching” with Smart Phone Application Implementation
    In public transport, bus bunching refers to a group of two or more transit vehicles (such as buses or trains), which were scheduled to be evenly spaced running along the same route, instead running in the same location at the same time. Dave Sprogis, Volunteer Software Developer, and Data Analyst in Watertown, MA, used AnyLogic to confirm his thesis that preventing "Bus Bunching" would improve the experience of public transit bus riders.
  • Emergency Evacuation Planning: Minimizing Gridlock and Improving Public Safety
    A typical rush hour impedes the mobility of individual vehicles and significantly slows the overall flow of traffic. This phenomenon is compounded by events of mass mobilization, such as during an evacuation due to a hurricane or other event. When this occurs, traffic can reach a state of gridlock. ITS researchers sought to understand how public safety could be improved during such events by incorporating communication among a percentage of the vehicle population.
  • Supply Chain Design for Vaccine Manufacturer
    GlaxoSmithKline (GSK) was the world’s sixth largest pharmaceutical company in 2014. The company was launching a new vaccine product on a new market that needed a distribution network different from what they had before. Therefore, the company needed to design a new supply chain and align manufacturing processes with it.
  • Apparel Company Chose Location for New Distribution Center Using Simulation Modeling
    Fruit of the Loom (FOTL) is one of the largest US apparel manufacturers and marketers. The company was expanding, and the executives wanted to know if it would be beneficial, in terms of shipping costs, to add a new distribution center (DC) on the east/west coasts of the US, or to redistribute products to a pre-existing DC. The contractors decided to simulate the whole supply chain in order to visualize DC locations on a GIS map, and the supply network between them.
  • Improving Mining Outbound Logistics with Agent-Based Simulation Modeling
    One of the largest resource companies in the world, with over $80 billion in sales, decided to enter a new market. It was planning to build a new potash mine with 90% of the resources exported. They wanted to design a reliable supply chain, with a high speed of supply replenishing, and the ability to recover from natural disasters and man-made crises benefiting from such volatility. Amalgama and Goldratt companies contracted this project to design the potash mining operations and a full supply chain of outbound logistics.
  • Simulation of the Construction of a Tunnel with a Tunnel Boring Machine
    The cost of one hour of down time of a tunnel boring machine is usually high and project managers have to do their best to avoid unnecessary delays in construction. The aim of the simulation project, which was carried out at Ruhr University Bochum in Germany, was to create a simulation model that would be capable of determining the bottlenecks in tunnel building processes in order to minimize the possible monetary losses.